On finite factors of centralizers of parabolic subgroups in Coxeter groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On centralizers of parabolic subgroups in Coxeter groups

Let W be an arbitrary Coxeter group, possibly of infinite rank. We describe a decomposition of the centralizer ZW (WI) of an arbitrary parabolic subgroup WI into the center of WI , a Coxeter group and a subgroup defined by a 2-cell complex. Only information about finite parabolic subgroups is required in an explicit computation. Moreover, by using our description of ZW (WI), we reveal a further...

متن کامل

Special Involutions and Bulky Parabolic Subgroups in Finite Coxeter Groups

In [3] Felder and Veselov considered the standard and twisted actions of a finite Coxeter group W on the cohomology H(MW ) of the complement of the complexified hyperplane arrangement MW of W . The twisted action is obtained by combining the standard action with complex conjugation; we refer the reader to [3] for precise statements. In a case by case argument, Felder and Veselov obtain a formul...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

Commensurators of parabolic subgroups of Coxeter groups

Let (W,S) be a Coxeter system, and let X be a subset of S. The subgroup of W generated by X is denoted by WX and is called a parabolic subgroup. We give the precise definition of the commensurator of a subgroup in a group. In particular, the commensurator of WX in W is the subgroup of w in W such that wWXw ∩WX has finite index in both WX and wWXw . The subgroup WX can be decomposed in the form ...

متن کامل

Normalizers of Parabolic Subgroups of Coxeter Groups

We improve a bound of Borcherds on the virtual cohomological dimension of the non-reflection part of the normalizer of a parabolic subgroup of a Coxeter group. Our bound is in terms of the types of the components of the corresponding Coxeter subdiagram rather than the number of nodes. A consequence is an extension of Brink’s result that the non-reflection part of a reflection centralizer is fre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsukuba Journal of Mathematics

سال: 2013

ISSN: 0387-4982

DOI: 10.21099/tkbjm/1358777001